

    
      
          
            
  
Welcome to PhpAudit’s documentation!

PhpAudit is a tool for creating and maintaining audit tables and triggers for creating audit trails of data changes in MySQL and MariaDB databases.

PhpAudit has the following features:


	Creates audit tables for tables in your database for which auditing is required.


	Creates triggers on tables for recording inserts, updates, and deletes of rows.


	Helps you to maintain audit tables and triggers when you modify your application’s tables.


	Reports differences in table structure between your application’s tables and audit tables.


	Disabling triggers under certain conditions.


	Flexible configuration. You can define additional columns to audit tables, for example: logging user and session IDs.




Using the audit trail you track changes made to the data of your application by the users of the application.
Even of data that has been deleted or changed back to its original state. Also, you can track how your application manipulates data and find bugs if your application.


Table of Contents



	Getting Started
	Installing PhpAudit

	Running PhpAudit

	Twin Schemata

	The Audit Configuration File

	Verbosity





	Installing & Uninstalling PhpAudit
	Installing PhpAudit
	Running PhpAudit





	Uninstalling PhpAudit





	An Example

	The Audit Config File
	The Database Section
	Convention

	Examples
	Example 1

	Example 2

	Example 3

	Example 4









	The Audit Columns Section
	Example

	Convention

	Examples
	Example 1: Timestamp

	Example 2: Statement Type

	Example 3: Row State

	Example 4: Database Session

	Example 5: Order

	Example 6: Database User

	Example 7: Application Session

	Example 8: End User









	The Additional SQL Section
	Example





	The Tables Section
	Examples
	Example 1: No audit trail

	Example 2: Audit trail













	The PhpAudit Program
	The alter-audit-table command

	The audit command

	The diff command

	The drop-triggers command





	Schema Changes and Deployment
	Schema Changes
	New Table

	Obsolete Table

	Renamed Table

	Table Options

	New Column

	Obsolete Column

	Renamed Column

	Changed Column Type





	Deployment
	Simple Deployment

	Complex Deployment









	Miscellaneous
	Required Grants

	Indexes

	Setting User Defined Variables in MySQL
	Explicit Query From PHP

	Implicit in SQL Query





	Limitations





	License









          

      

      

    

  

    
      
          
            
  
Getting Started

In this chapter you will learn how to install PhpAudit and start creating audit trails on your application data.


Installing PhpAudit

The preferred way to install PhpAudit is using composer [https://getcomposer.org/]:

composer require setbased/php-audit







Running PhpAudit

You can run PhpAudit from the command line:

./vendor/bin/audit





If you have set bin-dir in the config section in composer.json you must use a different path.



Twin Schemata

PhpAudit requires two schemata (databases):


	One schema (database) for your application tables. We call this schema the data schema.


	One schema (database) for the audit tables. We call this schema the audit schema.




PhpAudit will create an audit table in the audit schema for recording the audit trail with the same name as the table in the data schema. You can use any (valid) name for these two schemata (database).



The Audit Configuration File

The audit configuration file specification is described in detail in The Audit Config File. In this section we provide an example audit configuration file.

{
  "database": {
    "host": "localhost",
    "user": "foo_owner",
    "password": "s3cr3t",
    "data_schema": "foo_data",
    "audit_schema": "foo_audit"
  },
  "audit_columns": [
    {
      "column_name": "audit_timestamp",
      "column_type": "timestamp not null default now()",
      "expression": "now()"
    },
    {
      "column_name": "audit_statement",
      "column_type": "enum('INSERT','DELETE','UPDATE') character set ascii collate ascii_general_ci not null",
      "value_type": "ACTION"
    },
    {
      "column_name": "audit_type",
      "column_type": "enum('OLD','NEW') character set ascii collate ascii_general_ci not null",
      "value_type": "STATE"
    },
    {
      "column_name": "audit_uuid",
      "column_type": "bigint(20) unsigned not null",
      "expression": "@audit_uuid"
    },
    {
      "column_name": "audit_rownum",
      "column_type": "int(10) unsigned not null",
      "expression": "@audit_rownum"
    }
  ],
  "additional_sql": [
    "if (@audit_uuid is null) then",
    "  set @audit_uuid = uuid_short();",
    "end if;",
    "set @audit_rownum = ifnull(@audit_rownum, 0) + 1;"
  ]
}





The audit configuration file consists out of 3 sections:


	The database section, we will discuss this section below and in detail in The Database Section.


	The audit_columns section. See The Audit Columns Section for a detailed explanation.


	The additional_sql section. See The Additional SQL Section for a detailed explanation.




The database section holds the variables described below:


	host
The host were the MySQL server is running


	user
The user that is the owner of the tables in the data schema and audit schema.
See Required Grants for an exact specification of required grants.


	password
The password of the owner.
In The Database Section we describe how to store the password outside the audit configuration file.


	data_schema
The schema (database) with your application tables.


	audit_schema
The schema (database) for the audit tables.
The data schema and the audit schema must be two different schemata (databases).




Throughout this manual we assume that the audit configuration file is stored in etc/audit.json. You are free to choose your preferred path.

Run PhpAudit with the audit command:

./vendor/bin/audit audit etc/audit.json





Output:

Found new table FOO_EMPLOYEE
Wrote etc/audit.json





The first time you run the audit command PhpAudit will only report the tables found in the data schema and add the tables in the tables section in the audit configuration file. Suppose you application has a table FOO_EMPLOYEE, the tables section will look like:

{
  "database": {},
  "audit_columns": [],
  "additional_sql": [],
  "tables": {
    "FOO_EMPLOYEE": {
      "audit": null,
      "alias": null,
      "skip": null
    }
  }
}





For all tables for which you want an audit trail you must set the audit flag to true. In our example:

{
  "database": {},
  "audit_columns": [],
  "additional_sql": [],
  "tables": {
    "FOO_EMPLOYEE": {
      "audit": true,
      "alias": null,
      "skip": null
    }
  }
}





and rerun PhpAudit with the audit command:

./vendor/bin/audit audit etc/audit.json





Output:

Creating audit table foo_audit.FOO_EMPLOYEE
Wrote etc/audit.json





You can now insert, update, and delete rows in/from table foo_data.FOO_EMPLOYEE and see the recorded audit trail in table foo_audit.FOO_EMPLOYEE.



Verbosity

In verbose mode (-v) the audit command will show triggers dropped and created:

./vendor/bin/audit -v audit etc/audit.json





Output:

Creating audit table foo_audit.FOO_EMPLOYEE
Creating trigger foo_data.trg_audit_5d7a1d1e18ada_insert on table foo_data.FOO_EMPLOYEE
Creating trigger foo_data.trg_audit_5d7a1d1e18ada_update on table foo_data.FOO_EMPLOYEE
Creating trigger foo_data.trg_audit_5d7a1d1e18ada_delete on table foo_data.FOO_EMPLOYEE
Wrote etc/audit.json





In very verbose mode (-vv) PhpAudit will show each executed SQL statement also.





          

      

      

    

  

    
      
          
            
  
Installing & Uninstalling PhpAudit


Installing PhpAudit

The preferred way to install PhpAudit is using composer [https://getcomposer.org/]:

composer require setbased/php-audit






Running PhpAudit

You can run PhpAudit from the command line:

./vendor/bin/audit





If you have set bin-dir in the config section in composer.json you must use a different path.

For example:

{
  "config": {
    "bin-dir": "bin/"
  }
}





then you can run PhpAudit from the command line:

./bin/audit








Uninstalling PhpAudit

Before you uninstall PhpAudit you must delete all audit triggers from the tables in the data schema. This can be done with the drop-triggers command:

./vendor/bin/audit drop-triggers etc/config.json





Remove PhpAudit from your project with composer [https://getcomposer.org/]:

composer remove setbased/php-audit









          

      

      

    

  

    
      
          
            
  
An Example

In this section we give a real world example taken from a tournament on the Nahouw [https://www.nahouw.net]. We have reduced the tournament table to two columns and changed some IDs for simplification.

select *
from   nahouw_data.NAH_TOURNAMENT
where  trn_id = 4473





Output:







	trn_id

	trn_name





	4773

	Correct name






The audit trail for this tournament:

select *
from   nahouw_audit.NAH_TOURNAMENT
where  trn_id = 4473


















	audit_timestamp

	audit_statement

	audit_state

	audit_uuid

	audit_rownum

	audit_ses_id

	audit_usr_id

	trn_id

	trn_name





	2012-05-05 08:36:06

	INSERT

	NEW

	310616503508533789

	2

	34532889

	65

	4773

	Wrong name



	2013-02-01 10:55:01

	UPDATE

	OLD

	311037142136521378

	5

	564977477

	107

	4773

	Wrong name



	2013-02-01 10:55:01

	UPDATE

	NEW

	311037142136521378

	5

	564977477

	107

	4773

	Correct name






Notice that the audit table has 7 additional columns. You can configure more or less columns and name them to your needs.


	audit_timestamp: The time the statement was executed.


	audit_statement: The type of statement. One of INSERT, UPDATE, OR DELETE.


	audit_sate:      The state of the row. NEW or OLD.


	audit_uuid:      A UUID per database connection. Using this ID we can track all changes made during a page request.


	audit_rownum:    The number of the audit row within the UUID. Using this column we can track the order in which changes are made during a page request.


	audit_ses_id:    The ID the session of the web application.


	audit_usr_id:    The ID of the user has made the page request.




From the audit trail we can see that user 65 has initially entered the tournament with a wrong name.
We see that the tournament insert statement was the second statement executed. Using UUID 310616503508533789 we found the first statement was an insert statement of the tournament’s location which is stored in another table.
Later user 107 has changed the tournament name to its correct name.

On table nahouw_data.NAH_TOURNAMENT we have three triggers, one for insert statements, one for update statements, and one for delete statements.
Below is the code for the update statement (the code for the other triggers look similar).

create trigger `nahouw_data`.`trg_trn_update`
after UPDATE on `nahouw_data`.`NAH_TOURNAMENT`
for each row
begin
  if (@audit_uuid is null) then
    set @audit_uuid = uuid_short();
  end if;
  set @audit_rownum = ifnull(@audit_rownum, 0) + 1;
  insert into `nahouw_audit`.`NAH_TOURNAMENT`(audit_timestamp,audit_type,audit_state,audit_uuid,rownum,audit_ses_id,audit_usr_id,trn_id,trn_name)
  values(now(),'UPDATE','OLD',@audit_uuid,@audit_rownum,@audit_ses_id,@audit_usr_id,OLD.`trn_id`,OLD.`trn_name`);
  insert into `nahouw_audit`.`NAH_TOURNAMENT`(audit_timestamp,audit_type,audit_state,audit_uuid,rownum,audit_ses_id,audit_usr_id,trn_id,trn_name)
  values(now(),'UPDATE','NEW',@audit_uuid,@audit_rownum,@audit_ses_id,@audit_usr_id,NEW.`trn_id`,NEW.`trn_name`);
end








          

      

      

    

  

    
      
          
            
  
The Audit Config File

This chapter is the specification of the audit config file.

For most projects the audit config file must added to the VCS and distributed to the production environment of your project (unless you have some other mechanism for maintaining audit tables and triggers).

The audit config file is a JSON file and consist out of four sections which we discuss in detail in the following sections.

{
  "database": {},
  "audit_columns": [],
  "additional_sql": [],
  "tables": {}
}






The Database Section

The database section holds the variables described below:


	credentials (optional)
The filename relative to the path of the audit config file of a supplementary configuration file. Any configuration setting in the supplementary configuration file will override the setting in database section of the audit config file. You can choose your favorite configuration format for the credentials file: ini, json, xml, or yml. You can only store the password in the supplementary configuration file or all database settings.


	host (mandatory)
The host were the MySQL server is running


	user  (mandatory)
The user that is the owner of the tables in the data schema and audit schema.


	password  (mandatory)
The password of the owner.


	data_schema  (mandatory)
The schema (database) with your application tables.


	audit_schema  (mandatory)
The schema (database) for the audit tables.
The data schema and the audit schema must be two different schemata (databases).


	port (optional)
The port number for connecting to the MySQL server. Default value is 3306.





Convention

You are encouraged to follow this naming convention for the data schema and audit schema.

Both schema (databases) names start with the name or abbreviation of your project followed by _data for the data schema and _audit for the audit schema. For example foo_data and foo_audit.



Examples


Example 1

A basic example.

audit.json:

{
  "database": {
    "host": "localhost",
    "user": "foo_owner",
    "password": "s3cr3t",
    "data_schema": "foo_data",
    "audit_schema": "foo_audit"
  }
}







Example 2

In this example the password stored in credentials.ini will be used.

audit.json:

{
  "database": {
    "credentials": "credentials.ini",
    "host": "localhost",
    "user": "foo_owner",
    "password": "foo_owner",
    "data_schema": "foo_data",
    "audit_schema": "foo_audit"
  }
}





credentials.ini:

[database]
password =  s3cr3t







Example 3

In this example the user name and password stored in credentials.xml will be used.

audit.json:

{
  "database": {
    "credentials": "credentials.xml",
    "host": "localhost",
    "data_schema": "foo_data",
    "audit_schema": "foo_audit"
  }
}





credentials.xml:

<?xml version="1.0" encoding="UTF-8"?>
<config>
    <database>
        <user>foo_owner</user>
        <password>s3cr3t</password>
    </database>
</config>







Example 4

In this example only settings stored in credentials.json will be used.

audit.json:

{
  "database": {
    "credentials": "credentials.json"
  }
}





credentials.json:

{
  "database": {
    "host": "127.0.0.1",
    "user": "foo_owner",
    "password": "foo_owner",
    "data_schema": "foo_data",
    "audit_schema": "foo_audit",
    "port": 3307
  }
}









The Audit Columns Section

The audit columns section specifies the additional columns that will added to each audit table in the audit schema.

The additional column specification become in two flavors:


	value is either the action (i.e. insert, update, or delete) or the state of the row (i.e. NEW or OLD),


	value is a valid SQL expression that can be used in an insert statement in a trigger.





Example

{
  "audit_columns": [
    {
      "column_name": "flavor 1",
      "column_type": "...",
      "value_type": "..."
    },
    {
      "column_name": "flavor 2",
      "column_type": "...",
      "expression": "..."
    }
  ]
}





Both flavors have the fields column_name and column_type in common.


	column_name
The name of the additional column in the audit table. You must choose a name that is not been used in any of your tables in the data schema (for which auditing is enabled).


	column_type
The column type specification as used in a CREATE TABLE statement.


	value_type
Either ACTION or STATE.


	ACTION
The action of the SQL statement that has fired the audit trigger. Possible values are INSERT, UPDATE, or DELETE.


	STATE
The state of the row.


	An insert statement will insert one row in the audit table with value NEW.


	A delete statement will insert one row in the audit table with value OLD.


	An update statement will insert two rows in the audit table: OLD with the values of the row (in the data table) before the update statement and NEW with the values of the row (in the data table) after the update statement.










	expression Any valid SQL expression that can be used in an insert statement in a trigger.






Convention

You free to choose any column name for an additional table column as long the column name does not collide with a column name in a data table.

You are encouraged to follow this naming convention for the additional table column: the name of an additional table column has prefix audit_.



Examples

In this section we provide several useful examples for additional columns.

Additional columns are optional, however, in practice additional columns given in examples 1, 2, and 3 are at least required to record a useful audit trail.

Examples 4 and 5 for recording all data changes made in a database session and the order in which they are made.


Example 1: Timestamp

Recording the time of the data change.

{
  "audit_columns": [
    {
      "column_name": "audit_timestamp",
      "column_type": "timestamp not null default now()",
      "expression": "now()"
    }
  ]
}







Example 2: Statement Type

Recording the statement type of the query.

{
  "audit_columns": [
    {
      "column_name": "audit_statement",
      "column_type": "enum('INSERT','DELETE','UPDATE') character set ascii collate ascii_general_ci not null",
      "value_type": "ACTION"
    }
  ]
}







Example 3: Row State

Recording the state of the row.

{
  "audit_columns": [
    {
      "column_name": "audit_type",
      "column_type": "enum('OLD','NEW') character set ascii collate ascii_general_ci not null",
      "value_type": "STATE"
    }
  ]
}







Example 4: Database Session

Recording the database session (a single connection from your PHP application to the MySQL instance). See The Additional SQL Section for setting the user defined variable [https://mariadb.com/kb/en/user-defined-variables/] @audit_uuid in MySQL.

{
  "audit_columns": [
    {
      "column_name": "audit_uuid",
      "column_type": "bigint(20) unsigned not null",
      "expression": "@audit_uuid"
    }
  ],
  "additional_sql": [
    "if (@audit_uuid is null) then",
    "  set @audit_uuid = uuid_short();",
    "end if;",
  ]
}







Example 5: Order

Recording the order of the data changes. See The Additional SQL Section for setting the user defined variable [https://mariadb.com/kb/en/user-defined-variables/] @audit_rownum in MySQL.

{
  "audit_columns": [
    {
      "column_name": "audit_rownum",
      "column_type": "int(10) unsigned not null",
      "expression": "@audit_rownum"
    }
  ],
  "additional_sql": [
    "set @audit_rownum = ifnull(@audit_rownum, 0) + 1;"
  ]
}







Example 6: Database User

Recording the database user connection to the server. This example is useful when different database user can connect to your database. For example you have an application with a HTML frontend connecting to the database with user web_user, a REST API connecting to the database with user api_user, and some background process connecting to the database with user mail_user.

{
  "audit_columns": [
    {
      "column_name": "audit_user",
      "column_type": "varchar(80) character set utf8 collate utf8_bin not null",
      "expression": "user()"
    }
  ]
}





On MariaDB the maximum length of a user name is 80 characters, on mysql the maximum length of a user name is 32 characters.



Example 7: Application Session

Recording the session ID. This example is useful tracking data changes made in multiple page request in a single session of a web application.

{
  "audit_columns": [
    {
      "column_name": "audit_ses_id",
      "column_type": "int(10) unsigned",
      "expression": "@audit_ses_id"
    }
  ]
}





When retrieving the session you must set the user defined variable [https://mariadb.com/kb/en/user-defined-variables/] @audit_ses_id in MySQL from your PHP application. See Setting User Defined Variables in MySQL for examples of setting user defined variables [https://mariadb.com/kb/en/user-defined-variables/] in MySQL.



Example 8: End User

Recording the user ID. This example is useful for recording the end user who has modified the data using your PHP application.

{
  "audit_columns": [
    {
      "column_name": "audit_usr_id",
      "column_type": "int(10) unsigned",
      "expression": "@audit_usr_id"
    }
  ]
}





When retrieving the session and when signing in or off you must set the user defined variable [https://mariadb.com/kb/en/user-defined-variables/] @audit_usr_id in MySQL from your PHP application. See Setting User Defined Variables in MySQL for examples of setting user defined variables [https://mariadb.com/kb/en/user-defined-variables/] in MySQL.





The Additional SQL Section

The additional SQL section specifies additional SQL statements that are placed at the beginning of the body of each created audit trigger.


Example

This example show how to set the variables @audit_uuid and @audit_rownum mentioned in sections Example 4: Database Session and Example 5: Order.

{
   "additional_sql": [
      "if (@audit_uuid is null) then",
      "  set @audit_uuid = uuid_short();",
      "end if;",
      "set @audit_rownum = ifnull(@audit_rownum, 0) + 1;"
    ]
}








The Tables Section

The tables sections holds an entry for each table in the data schema. New tables are automatically added to the tables section and obsolete tables are automatically removed from the tables section when your run PhpAudit with the audit command.

Foreach table in the table section there are three fields:


	audit The audit flag. A boolean indication auditing is enabled or disabled.



	true Recording of an audit trail for this table is enabled.


	false Recording of an audit trail for this table is disabled.


	null Recording of an audit trail for this table is not specified. Each time  your run PhpAudit with the audit command PhpAudit will report that a new table has been found.









	alias An alias for the table. This alias must be unique and will be used in the names of the audit trigger for this table. If you don’t specify a value PhpAudit will generate automatically an alias when auditing is enabled.


	skip An optional variable name. When the value of this variable is not null the audit trigger will skip recording data changes.




When you disable recording of an audit trail of a table the audit triggers will be removed, however, the audit table will remain in the audit schema.


Examples


Example 1: No audit trail

No audit trail will be recorded for table TMP_IMPORT.

{
  "tables": {
      "TMP_IMPORT": {
        "audit": false,
        "alias": null,
        "skip": null
      }
    }
}







Example 2: Audit trail

An audit trail will be recorded for table FOO_USER.

{
  "tables": {
      "FOO_USER": {
        "audit": true,
        "alias": "usr",
        "skip": "@audit_skip_foo_user"
      }
    }
}





When user defined variable [https://mariadb.com/kb/en/user-defined-variables/] @audit_skip_foo_user in MySQL is set no audit triggers will record data changes. In the SQL code below updating column usr_last_login will not be recorded.

set @audit_skip_foo_user = 1;

update FOO_USER
set    usr_last_login = now()
where  usr_id = p_usr_id
;

set @audit_skip_foo_user = null;











          

      

      

    

  

    
      
          
            
  
The PhpAudit Program

The PhpAudit program is a Symphony console application [https://symfony.com/doc/current/components/console.html]  with four additional commands:



	alter-audit-table


	audit


	diff


	drop-triggers







We discuss the additional commands in the sections below.

Some commands provide additional output when in verbose mode (-v). All commands show the queries been executed in very verbose mode (-vv).

[image: _images/screenshot-help.png]

The alter-audit-table command

The alter-audit-table command generates SQL statements to align the tables in the audit schema with the tables in the data schema and the additional columns section in the audit config file, see The Audit Columns Section.

./vendor/bin/audit alter-audit-table etc/audit.json





Output:

alter table `test_audit`.`FOO_EMPLOYEE`
change column `emp_name` `emp_name` varchar(80) character set utf8 collate utf8_general_ci null
;





You must inspect each SQL statement manually before executing. See Changed Column Type for an explanation about incompatible column types.



The audit command

The audit command creates and alters audit tables (in the audit schema and audit triggers on tables in the data schema.

Usage of the audit command is discussed ind detail in Getting Started and Schema Changes and Deployment.



The diff command

The diff command show in a graphical manner the differences between the tables in the audit schema with the tables in the data schema and the additional columns section in the audit config file, see The Audit Columns Section.

Without the --full option only tables with differences and only different columns are shown. With the --full option all tables and all columns are shown.

[image: _images/screenshot-diff.png]


The drop-triggers command

The drop-triggers command will drop all triggers in the data schema.

[image: _images/screenshot-drop-triggers.png]




          

      

      

    

  

    
      
          
            
  
Schema Changes and Deployment

During the life time of your application there will schema changes:


	new tables will be created,


	obsolete tables will be dropped,


	tables will be renamed,


	table options will change,


	new columns will added to a table,


	obsolete columns will be drop from a table,


	columns will be renamed,


	column types will change.




In this chapter we discuss how to handle all these types of changes. Also, we discuss how to deploy schema changes on the production environment.

PhpAudit becomes with two commands that helps you to compare the data schema with the audit schema:


	The diff command, see The diff command.


	The alter-audit-table command, see The alter-audit-table command.





Schema Changes

In this section we discuss all possible schema changes one by one. You can combine many schema changes on one go.


New Table

When adding a new table to the database of your application you must decide whether auditing is required for this table.


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for creating the new table.


	Run the audit command of PhpAudit. PhpAudit will report that it has found a new table.


	Auditing is not required for the new table:


	Set the audit flag for the new table to false.






	Auditing is required for the new table:


	Set the audit flag for the new table to true.


	Run the audit command of PhpAudit again. This time an audit table and audit triggers will be created for the new table.










	Commit the changes in the audit config file to your VCS.






Obsolete Table


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for dropping the obsolete table.


	Run the audit command of PhpAudit. PhpAudit will report that it has found an obsolete table.


	PhpAudit will remove the obsolete table from the tables section.


	PhpAudit will not drop the table from the audit schema. The corresponding table in the audit schema is still a part of your application’s audit trail.






	Commit the changes in the audit config file to your VCS.




If you decide now or later that the corresponding table in the audit schema is not longer required you must drop the corresponding table in the audit schema your self. This does not affect PhpAudit at all nor requires any action by PhpAudit.



Renamed Table

When you rename a table in the data schema there is no reliable way for PhpAudit to detect a table has been renamed. PhpAudit will see an obsolete and a new table.


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for renaming the table in the data schema.


	Run similar DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for renaming the corresponding table in the audit schema.


	Rename the table in the tables section of the audit config file.


	At this moment the audit triggers on the table in data schema are still using the old table name in the audit schema.






	Run the audit command of PhpAudit.


	The audit triggers on the table in data schema are using new table name in the audit schema now.






	Commit the changes in the audit config file to your VCS.




If you omit renaming the table in the audit config file, PhpAudit will report an obsolete table and a new table. I this case you must restore the table configuration (i.e. the audit file, alias and skip variable) in the aut config file.

If you omit renaming the corresponding table in the audit schema, PhpAudit will create a new table in the audit schema.



Table Options


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for altering the table options of the table in the data schema.


	Run similar DDL [https://en.wikipedia.org/wiki/Data_definition_language]  statements for altering the table options of the corresponding table in the audit schema.




PhpAudit is unaware of most table options. It only considers the following table options:


	CHARACTER SET


	COLLATE


	ENGINE




Running the audit command of PhpAudit will not affect the table options of any table in the audit schema.

See XXX for a discussing about transactional and non transaction storage engines.



New Column


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for adding the new column to the table data schema.


	Run the audit command of PhpAudit.


	The new column will be added to the corresponding table in the audit schema and added to the queries in the audit triggers.










Obsolete Column


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for dropping the obsolete column from the table data schema.


	Run the audit command of PhpAudit.


	The obsolete column will be removed from the queries in the audit triggers.


	The obsolete column in the corresponding table in the audit schema is still a part of your application’s audit trail and will not be dropped.








If you decide now or later that the obsolete column in the corresponding table in the audit schema is not longer required you must drop the obsolete column in the corresponding table in the audit schema your self. This does not affect PhpAudit at all nor requires any action by PhpAudit.



Renamed Column

When you rename a column of a table in the data schema there is no reliable way for PhpAudit to detect a  column has been renamed. PhpAudit will see an obsolete and a new column.


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for renaming the column of the table in the data schema.


	Run similar DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements for renaming the column of the corresponding table in the audit schema.


	At this moment the audit triggers on the table in data schema are still using the old column name.






	Run the audit command of PhpAudit.


	The audit triggers on the table in the data schema are using the new column name now.










Changed Column Type

We consider two types of column type changes:


	Changing the column type to a more comprehensive column type. For example:


	varchar(10) charset utf8 collation utf8_general_ci => varchar(20) charset utf8 collation utf8_general_ci


	varchar(80) charset ascii collation ascii_general_ci => varchar(80) charset utf8 collation utf8_general_ci


	smallint(4) => int(6)






	Changing the column type to a less comprehensive or incompatible column type: For example:


	varchar(10) charset utf8 collation utf8_general_ci => int(10)


	varchar(80) charset utf8 collation utf8_general_ci => varchar(80) charset latin1 collation latin1_general_ci


	longblob => medium text








Currently, automatically modification of columns of tables in the audit schema is not implemented and planned for a future release.

We consider three kinds of less comprehensive or incompatible column types:


	The audit trail does not contain any data that cannot be converted to the new column type. For example:


	A varchar(10) that holds only integers (as strings) in both the data and audit table can be modified to an int(10) without any issues.


	A varchar(80) charset utf8 collation utf8_general_ci that holds only latin1 characters in both the data and audit table can be modified to an varchar(80) charset latin1 collation latin1_general_ci without any issues.






	The audit trail does contain data that cannot be converted to the new column type however a more comprehensive column type (for the actual data in both columns in the data schema and audit schema) is available. For example:


	A varchar(10) charset utf8 collation utf8_general_ci (that must be modified to varchar(30) charset latin1 collation latin1_general_ci) that holds only latin1 characters in the data table, but the audit table holds data outside the latin1 character set. In this case the column in the data schema can be converted to varchar(30) charset latin1 collation latin1_general_ci and the column in the audit schema can be converted to varchar(30) charset utf8 collation utf8_general_ci.






	The audit trail does contain data that cannot be converted to the new column type and a more comprehensive column type is not available. For example:


	A varbinary(10) (that must be modified to int(10)) column holding binary in the audit trail but not any more in the data table.




In this case to only solution is to rename the column in the audit table. The audit command of PhpAudit will create a new column in the audit table with the new column type.








Deployment

In the above section we discuss all possible schema changes one by one. of course you can combine all schema changes in one go. The basic rules are simple:


	Renaming tables:


	Rename the tables in the data schema.


	Rename the corresponding tables in the audit schema.


	Rename the tables in the audit config file.






	Renaming columns:


	Rename the columns in the data schema.


	Rename the columns in the corresponding tables in the audit schema.






	Changing column types:


	Change the column types in the data schema.


	Change the column types  in the corresponding tables in the audit schema.


	See Changed Column Type for incompatible column type changes.






	Run the audit command of PhpStratum.





Simple Deployment

If your deployment script has only DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements (affecting tables that require auditing), followed by only (or none) DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements (affecting tables that require auditing), it is called a simple deployment. You must your deployment as scripts as follows:


	Run the DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements.


	Run the audit command of PhpAudit.


	Use the latest version of your audit config file.


	All audit tables and triggers are in a proper state to capture the data changes caused by the following DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.






	Run the DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.






Complex Deployment

If your deployment script has only DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements (affecting tables that require auditing), followed by only (or none) DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements (affecting tables that require auditing), followed by only DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements (affecting tables that require auditing), followed by only (or none) DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements (affecting tables that require auditing) and so on, it is called a complex deployment. You must your deployment as scripts as follows:


	Run DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements.


	Run the audit command of PhpAudit (with the latest version of you audit config file).


	Use the latest version of your audit config file.


	Make sure that the audit flags for are still correct.


	All audit tables and triggers are in a proper state to capture the data changes caused by the following DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.






	Run DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.


	Run DDL [https://en.wikipedia.org/wiki/Data_definition_language] statements.


	Run the audit command of PhpAudit (with the latest version of you audit config file).


	Use the latest version of your audit config file.


	Make sure that the audit flags for are still correct.


	All audit tables and triggers are in a proper state to capture the data changes caused by the following DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.






	Run DML [https://en.wikipedia.org/wiki/Data_manipulation_language] statements.


	and so on









          

      

      

    

  

    
      
          
            
  
Miscellaneous

In this chapter we discuss miscellaneous aspects of PhpAudit.


Required Grants

The (MySQL) user under which PhpAudit is connecting to the database instance requires the following grants:


	data schema:


	lock tables


	select


	trigger






	audit schema:


	create


	drop


	insert


	select








For example:

create user `foo_audit`@`localhost`;
grant lock tables, select, trigger on `foo_data`.* to `foo_audit`@`localhost`;
grant create, drop, insert, select on `foo_audit`.* to `foo_audit`@`localhost`;





Remember a trigger is running under the definer, i.e. the user which the trigger is created.



Indexes

PhpAudit does not create any indexes on tables in the audit schema. Creating an audit trail is about inserting rows in audit tables only. Hence, PhpAudit does not requires any indexes.

If your application is querying on tables in the audit schema you are free to add indexes on the tables in the audit schema. PhpAudit will not drop or alter any indexes in the audit schema.

Be careful with unique indexes. A key of a table in the data schema will (very likely) not be a key of the corresponding table in the audit schema.



Setting User Defined Variables in MySQL

There are several ways for setting user defined variables in MySQL from your PHP application. In this section we discuss two methods. More information about user defined variables in MySQL can be found at https://mariadb.com/kb/en/user-defined-variables/ and https://dev.mysql.com/doc/refman/8.0/en/user-variables.html


Explicit Query From PHP

The PHP snippet below is an example of setting a user defined variable in MySQL from a PHP application.

// User has signed in and variable $usrId holds the ID of the user and
// $mysql is the connection to MySQL.
$mysql->real_query(sprintf('set @audit_usr_id = %s', $usrId ?? 'null'));







Implicit in SQL Query

The SQL statement below is an example of setting user defined variables in MySQL in a SQL statement (in this example session data is stored in table FOO_SESSION).

select @audit_ses_id := ses_id
,      @audit_usr_id := usr_id
,      ses_data
from   FOO_SESSION
where  ses_token = 'the-long-token-stored-in-the-session-cookie-of-the-user-agent'
;








Limitations

PhpAudit has the following limitations:


	A TRUNCATE TABLE statement will remove all rows from a table and does not activate any triggers. Hence, the removing of those rows will not be logged in the audit table.


	A delete or update of a child row caused by a cascaded foreign key action of a parent row will not activate triggers on the child table. Hence, the update or deletion of those rows will not be logged in the audit table.




Both limitations arise from the behavior of MySQL. In practice these limitations aren’t of any concern. In applications where tables are “cleaned” with a TRUNCATE TABLE we never had the need to audit these tables. We found the same for child tables with a ON UPDATE CASCADE or ON UPDATE SET NULL reference option.





          

      

      

    

  

    
      
          
            
  
License

The project is licensed under the MIT license [https://github.com/SetBased/php-audit/blob/master/LICENSE].




          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/screenshot-help.png
$ ./vendor/bin/audit
audit 1.6.6

usage:
command [options] [argunents:

options:
-h, --help Display this help message
-q, --quiet Do not output any message
-V, --version Display this application version
--ansi. Force ANST output
--no-ansi. Disable ANST output
-n, --no-interaction Do not ask any interactive question
vlwwlvwy, --verbose Increase the verbosity of messages: 1 for normal output

2 for more verbose output and 3 for debug

Available commands:
alter-audit-table Creates alter SQL statements for audit tables

audit Maintains audit tables and audit triggers
diff Compares data tables and audit tables
drop-triggers Drops all triggers

help Displays help for a comnand

Llist Lists commands

s 1





_static/ajax-loader.gif





_images/screenshot-diff.png
$ ./vendor/bin/audit diff etc/audit.json
FOO_EMPLOYEE

| colunn | audit table | config / data table

ERpUASRE | varchar(60) | varchar(ge) |

| [utfs] [utfs_general cil | [utfs] [utf8_general cil

$ ./vendor/bin/audit diff --full etc/audit.json
FOO_EMPLOYEE

| column | audit table | config / data table

audit_timestamp
audit_statement

timestamp not null
enum(*INSERT', 'DELETE', "UPDATE") not null
[ascii] [ascii_general ci

timestamp not null
enum(*INSERT', 'DELETE', "UPDATE") not null
[ascii] [ascii_general ci

audit_type enum(*OLD", "NEW') not null enum(*OLD", "NEW') not null
lascii] [ascii_general cil [ascii] [ascii_general ci
audit_uuid bigint(20) unsigned not null bigint(20) unsigned not null

| | |

| | |

| | |

| | |

| | |

| | |

| audit_rownun | int(10) unsigned not null | int(10) unsigned not null
| audit_user | varchar(ge) not null | varchar(ge) not null

1 | [utf8] [utfs bin] | [utfs] [utfs bin

| | |
| | |
| | |
| | |
| | |
| | |

enp_id int(10) unsigned int(10) unsigned
enp_name varchar(60) varchar(80)

[utfs] [utf8_general cil [utf8] [utfs_general ci
enp_salary decinal(10,2) decinal (10,2
enp_role varchar (20) varchar (20

[utfs] [utf8_general cil

[utfs] [utf8_general cil

| engine | Tnnoos | Tnnoos
| character_set_name | utfs | utfs
| table collation | utfs general ci | utf8_general ci

B S SR §






_images/screenshot-drop-triggers.png
$ ./vendor/bin/audit drop-triggers etc/audit.json
Dropping trigger trg_audit_emp_delete from table FOO_EMPLOYEE
Dropping trigger trg_audit_emp_insert from table FOO_EMPLOYEE
Dropping trigger trg_audit_emp_update from table FOO_EMPLOYEE
File etc/audit.json is up to date

s





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to PhpAudit’s documentation!
        


        		
          Getting Started
          
            		
              Installing PhpAudit
            


            		
              Running PhpAudit
            


            		
              Twin Schemata
            


            		
              The Audit Configuration File
            


            		
              Verbosity
            


          


        


        		
          Installing & Uninstalling PhpAudit
          
            		
              Installing PhpAudit
              
                		
                  Running PhpAudit
                


              


            


            		
              Uninstalling PhpAudit
            


          


        


        		
          An Example
        


        		
          The Audit Config File
          
            		
              The Database Section
              
                		
                  Convention
                


                		
                  Examples
                


              


            


            		
              The Audit Columns Section
              
                		
                  Example
                


                		
                  Convention
                


                		
                  Examples
                


              


            


            		
              The Additional SQL Section
              
                		
                  Example
                


              


            


            		
              The Tables Section
              
                		
                  Examples
                


              


            


          


        


        		
          The PhpAudit Program
          
            		
              The alter-audit-table command
            


            		
              The audit command
            


            		
              The diff command
            


            		
              The drop-triggers command
            


          


        


        		
          Schema Changes and Deployment
          
            		
              Schema Changes
              
                		
                  New Table
                


                		
                  Obsolete Table
                


                		
                  Renamed Table
                


                		
                  Table Options
                


                		
                  New Column
                


                		
                  Obsolete Column
                


                		
                  Renamed Column
                


                		
                  Changed Column Type
                


              


            


            		
              Deployment
              
                		
                  Simple Deployment
                


                		
                  Complex Deployment
                


              


            


          


        


        		
          Miscellaneous
          
            		
              Required Grants
            


            		
              Indexes
            


            		
              Setting User Defined Variables in MySQL
              
                		
                  Explicit Query From PHP
                


                		
                  Implicit in SQL Query
                


              


            


            		
              Limitations
            


          


        


        		
          License
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/screenshot-help.png
$ ./vendor/bin/audit
audit 1.6.6

usage:
command [options] [argunents:

options:
-h, --help Display this help message
-q, --quiet Do not output any message
-V, --version Display this application version
--ansi. Force ANST output
--no-ansi. Disable ANST output
-n, --no-interaction Do not ask any interactive question
vlwwlvwy, --verbose Increase the verbosity of messages: 1 for normal output

2 for more verbose output and 3 for debug

Available commands:
alter-audit-table Creates alter SQL statements for audit tables

audit Maintains audit tables and audit triggers
diff Compares data tables and audit tables
drop-triggers Drops all triggers

help Displays help for a comnand

Llist Lists commands

s 1





_static/up-pressed.png





_static/screenshot-diff.png
$ ./vendor/bin/audit diff etc/audit.json
FOO_EMPLOYEE

| colunn | audit table | config / data table

ERpUASRE | varchar(60) | varchar(ge) |

| [utfs] [utfs_general cil | [utfs] [utf8_general cil

$ ./vendor/bin/audit diff --full etc/audit.json
FOO_EMPLOYEE

| column | audit table | config / data table

audit_timestamp
audit_statement

timestamp not null
enum(*INSERT', 'DELETE', "UPDATE") not null
[ascii] [ascii_general ci

timestamp not null
enum(*INSERT', 'DELETE', "UPDATE") not null
[ascii] [ascii_general ci

audit_type enum(*OLD", "NEW') not null enum(*OLD", "NEW') not null
lascii] [ascii_general cil [ascii] [ascii_general ci
audit_uuid bigint(20) unsigned not null bigint(20) unsigned not null

| | |

| | |

| | |

| | |

| | |

| | |

| audit_rownun | int(10) unsigned not null | int(10) unsigned not null
| audit_user | varchar(ge) not null | varchar(ge) not null

1 | [utf8] [utfs bin] | [utfs] [utfs bin

| | |
| | |
| | |
| | |
| | |
| | |

enp_id int(10) unsigned int(10) unsigned
enp_name varchar(60) varchar(80)

[utfs] [utf8_general cil [utf8] [utfs_general ci
enp_salary decinal(10,2) decinal (10,2
enp_role varchar (20) varchar (20

[utfs] [utf8_general cil

[utfs] [utf8_general cil

| engine | Tnnoos | Tnnoos
| character_set_name | utfs | utfs
| table collation | utfs general ci | utf8_general ci

B S SR §






_static/screenshot-drop-triggers.png
$ ./vendor/bin/audit drop-triggers etc/audit.json
Dropping trigger trg_audit_emp_delete from table FOO_EMPLOYEE
Dropping trigger trg_audit_emp_insert from table FOO_EMPLOYEE
Dropping trigger trg_audit_emp_update from table FOO_EMPLOYEE
File etc/audit.json is up to date

s





_static/up.png





